WORK SAMPLE PORTFOLIO Annotated work sample portfolios are provided to support implementation of the Foundation – Year 10 Australian Curriculum. Each portfolio is an example of evidence of student learning in relation to the achievement standard. Three portfolios are available for each achievement standard, illustrating satisfactory, above satisfactory and below satisfactory student achievement. The set of portfolios assists teachers to make on-balance judgements about the quality of their students' achievement. Each portfolio comprises a collection of students' work drawn from a range of assessment tasks. There is no predetermined number of student work samples in a portfolio, nor are they sequenced in any particular order. Each work sample in the portfolio may vary in terms of how much student time was involved in undertaking the task or the degree of support provided by the teacher. The portfolios comprise authentic samples of student work and may contain errors such as spelling mistakes and other inaccuracies. Opinions expressed in student work are those of the student. The portfolios have been selected, annotated and reviewed by classroom teachers and other curriculum experts. The portfolios will be reviewed over time. ACARA acknowledges the contribution of Australian teachers in the development of these work sample portfolios. #### THIS PORTFOLIO: YEAR 5 MATHEMATICS This portfolio provides the following student work samples: | Sample 1 | Geometry: My angle | |-----------|---| | Sample 2 | Measurement: Garden bed | | Sample 3 | Number: Treasure hunt | | Sample 4 | Measurement: How many can you make? | | Sample 5 | Number: Who are the fastest swimmers? | | Sample 6 | Measurement: Using time | | Sample 7 | Measurement: Using perimeter and area | | Sample 8 | Geometry: Location and transformation | | Sample 9 | Number: Number sentences | | Sample 10 | Geometry: Mapping | | Sample 11 | Statistics and Probability: Come in spinner | | Sample 12 | Number: How do I check my work? | | Sample 13 | Number: Spring fair | #### COPYRIGHT Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, you may view, download, display, print, reproduce (such as by making photocopies) and distribute these materials in unaltered form only for your personal, non-commercial educational purposes or for the non-commercial educational purposes of your organisation, provided that you retain this copyright notice. For the avoidance of doubt, this means that you cannot edit, modify or adapt any of these materials and you cannot sub-license any of these materials to others. Apart from any uses permitted under the Copyright Act 1968 (Cth), and those explicitly granted above, all other rights are reserved by ACARA. For further information, refer to (http://www.australiancurriculum.edu.au/Home/copyright). Year 5 Satisfactory This portfolio of student work shows the measurement and construction of different angles (WS1), comparison of the sizes of fractions by diagrams and calculations and their representation on a number line (WS2, WS5). The student solves problems using the four operations (WS3, WS9) and explains how they know their answers to calculations are reasonable (WS12). The student makes spinners to assist in carrying out simple probability experiments before evaluating the results (WS11) and creates a simple budget (WS13). The student investigates the areas and perimeters of different rectangles (WS7). The student explains the effect of transformations (WS8), locates axes of symmetry of shapes and describes the features of three-dimensional objects using two-dimensional representations (WS4). The student creates maps, locates landmarks and describes directions to locations (WS10). The student converts between 12 and 24 hour time (WS6). #### COPYRIGHT Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, you may view, download, display, print, reproduce (such as by making photocopies) and distribute these materials in unaltered form only for your personal, non-commercial educational purposes or for the non-commercial educational purposes of your organisation, provided that you retain this copyright notice. For the avoidance of doubt, this means that you cannot edit, modify or adapt any of these materials and you cannot sub-license any of these materials to others. Apart from any uses permitted under the Copyright Act 1968 (Cth), and those explicitly granted above, all other rights are reserved by ACARA. For further information, refer to (http://www.australiancurriculum.edu.au/Home/copyright). # **Geometry: My angle** #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had completed a unit of work on angles and their properties. They were given the following problems to solve: - Can you estimate and draw an angle of approximately 135° without using a protractor? - I looked at the clock before school and noticed that the hands made an acute angle. What time could it be? - I looked at the clock before school and noticed that the hands made a right angle. What time could it be? How do you know that you are right? - I looked at the clock before school and noticed that the hands made a reflex angle. What time could it be? How do you know that you are right? # **Geometry: My angle** #### **Annotations** Estimates and constructs an angle. Records angles using degrees. Measures angles with a protractor. Identifies angles in real-life contexts. Copyright Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (http://www.australiancurriculum.edu.au/Home/copyright). ### Measurement: Garden bed ### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had completed a unit of work on fractions and decimals. They were asked to complete two tasks: - Divide a large rectangular garden bed into a number of equal plots. What addition and subtraction sentences can you create with fractions by looking at your garden? - Tom created a number pattern which included the decimal 1.25. What could the pattern be? ## Measurement: Garden bed ### **Annotations** Calculates addition and subtraction of fractions with equivalent denominators. Creates and continues decimal patterns using hundredths, tenths and wholes. Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (https://www.australiancurriculum.edu.au/Home/copyright). # **Number: Treasure hunt** #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students were given the following problem to solve after completing a unit of work on multiplication, division, factors and multiples: - A teacher is planning a treasure hunt for teams of students in Year 5 and Year 6. There are 48 Year 5 students and 60 Year 6 students. Each team has to have equal numbers and team members are from the same year level. - What are all the possible team sizes that can participate in the treasure hunt? - What are the largest possible group sizes that our teacher can have? ### **Number: Treasure hunt** ### **Annotations** Identifies factors of a given number. Describes factors as being groups of the same size. Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (http://www.australiancurriculum.edu.au/Home/copyright). # Measurement: How many can you make? #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had studied three-dimensional objects and their two-dimensional relationships, including nets and features. Students were given a bag with two-dimensional shapes and asked to make as many three-dimensional objects as they could. They completed the table recoding as much information as they could about the three-dimensional objects. Students were encouraged to use mathematical terms to describe the objects. # Measurement: How many can you make? ### **HOW MANY CAN YOU MAKE?** Using the *2D shapes* in the bag, make as many *3D objects* as you can. Once you have constructed your 3D object, using the table below record as much information as you can about the 3D object. Remember to name your objects and to use the correct language. You must work independently to complete this task. #### **Annotations** Identifies and draws 3D objects and lists the attributes. Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (http://www.australiancurriculum.edu.au/Home/copyright). ### Number: Who are the fastest swimmers? #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had been studying a unit of work based on data from the Olympic Games. They had become familiar with ordering decimals on a number line, time in seconds, tenths of seconds and hundredths of seconds. Students were given tables with information about the results of the Men's 100m Freestyle Semi-Finals from the London Olympic Games. They were asked to order the results from fastest to slowest. They then completed further ordering of decimals and located them on a number line. Students were also asked to think about what could be done in one hundredth of a second. Year 5 Satisfactory # Number: Who are the fastest swimmers? #### Who Were the Fastest 100m Swimmers of 2012? The tables below contain information from the Men's 100m Freestyle Semi-Finals from the 2012 London Olympic Games. Task 1 Order the results from fastest to slowest performance, 1st-16th place. Semi-Final 1 | Lane | Athlete | Country | Time in
Seconds | Placing | |------|--------------------|----------------|--------------------|---------| | 01 | GILOT Fabien | France | 48.49 | 11+h | | 02 | CIELO Cesar | Brazil | 48.17 | 5th | | 03 | FRASER Brett | Cayman islands | 48.92 | 154 | | 04 | LOUW Gideon | South Africa | 48.44 | 9th | | 05 | MAGNUSSEN
James | Australia | 47.63 | J 5t | | 06 | LOBINTSEV Nikita | Russia | 48.38 | 8th | | 07 | ROBERTS James | Australia | 48.57 | 12th | | 08 | FRASER Shaune | Cayman Islands | 49.07 | 16th | Semi-Final 2 | Lane | Athlete | Country | Time in seconds | Placing | |------|--------------------------|-------------|-----------------|---------| | 01 | AGNEL Yannick | France | 48.23 \ | 7th | | 02 | JONES Cullen | USA | 48.60 | 14th | | 03 | HAYDEN Brent | Canada | 48.21 | 6th | | 04 | ADRIAN Nathan | USA | 47.97 | 2nd | | 05 | VERSCHUREN
Sebastiaan | Netherlands | 48.13 | 4th | | 06 | TIMMERS Pieter | Belgium | 48.57 | 12th | | 07 | CZERNIAK Konrad | Poland | 48.44 | 9th | | 08 | GARCIA Hanser | Cuba | 48.04 | 3rd | ### **Annotations** Orders decimal numbers from lowest to highest. ### Number: Who are the fastest swimmers? #### Who Were the Fastest 100m Swimmers of 2012? #### Task 2) Calculate the athletes with the 8 fastest times and record them in the final. in the correct lanes. The current world record for the 100m men's freestyle is 46.91 seconds set by Cesar Cielo in Rome on 30/07/09. Calculate the difference between each athlete's semi-final at the London Olympics and compare it to the current world record. Record the difference in the table. | Final | | |-------|--| |-------|--| | Lane | | Athlete | Difference
World Record
Time | |--------|-------------------------|-----------------------|------------------------------------| | Lane 1 | 7 th fastest | Yannick Agnel | + 1.30 secs | | Lane 2 | 5 th fastest | Cesar Cielo | +1.26secs | | Lane 3 | 3 rd fastest | Hanser Garcia | +1.13 secs | | Lane 4 | 1 st fastest | James Magnussen | +0.72 secs | | Lane 5 | 2 nd fastest | Nathen Adrian | +1.06 secs | | Lane 6 | 4 th fastest | Sebastigan Verschuren | 11.22 secs | | Lane 7 | 6 th fastest | Brent Haden | +1.30 secs | | Lane 8 | 8 th fastest | Nikita Lobintsev | +1.47secs | ### **Annotations** Compares two decimals to calculate the difference. Constructs and orders decimals on a number line. Locates decimals on a number line appropriately. ### Number: Who are the fastest swimmers? ### **Annotations** Compares data to calculate the difference. Gathers secondary data and constructs a table to represent data. Lists activities that can be performed within a given time. # **Measurement: Using time** #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had spent a week focusing on comparing and representing 12 and 24 hour time. They were asked to create a timeline of a typical day in their lives in 12 and 24 hour time and record their day using both digital and analog time. They completed this task in a half an hour time slot. # **Measurement: Using time** ### **Annotations** Converts 12 hour to 24 hour time and gives an explanation of 24 hour time. #### Copyright Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (http://www.australiancurriculum.edu.au/Home/copyright). 2014 Edition Page 16 of 32 # Measurement: Using perimeter and area #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had completed a unit of work on perimeter and area. They had been given opportunities to practise measuring objects using millimetres, centimetres, metres and calculate area using cm² and m². Students were asked to define area and perimeter and explain how each is calculated. They were then asked to choose shapes to measure and to calculate the perimeter and area of each. They were also asked to identify what units should be used to measure the length of items. # Measurement: Using perimeter and area #### **Annotations** Gives a basic explanation of perimeter and area. Chooses appropriate units to measure items. Calculates area and perimeter of foursided figures. Copyright Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (https://www.australiancurriculum.edu.au/Home/copyright). # **Geometry: Location and transformation** ### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had completed a unit of work about line and rotational symmetry, translation, rotation, reflection and the enlargement transformation of two-dimensional shapes. Students were asked to draw two-dimensional shapes and follow the language of position to transform, enlarge and record the lines of symmetry in the shapes. They were then asked to enlarge a two-dimensional shape using grid paper. # **Geometry: Location and transformation** #### Location & Transformation - Year 5 - Draw three different 2 dimensional shapes in the first column. - In the first row, show how the shape can be translated in different ways. Describe what you did. - In the second row, show how the shape can be rotated in different ways. Describe what you did. - In the third row, show how the shape can be reflected. Describe what you did. - · Show how many lines of symmetry each shape has. On the left side of the grid draw a simple picture. Enlarge the same picture on the right side of the grid. By how much have you enlarged it? Explain your thinking. #### **Annotations** Demonstrates that shape remains the same under translation. Understands that rotating changes position but not shape. Explains the effects of reflection. Attempts to explain how the enlarged figure was created. Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (http://www.australiancurriculum.edu.au/Home/copyright). ### **Number: Number sentences** #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had completed class tasks involving number sentences and unknown quantities. Students were asked to complete a task to describe numbers in a number sentence in a variety of ways. This task was completed under timed conditions. Year 5 Satisfactory # **Number: Number sentences** # Number Sentences #### Instructions! - Choose 15 different numbers between 0 and 100 - Express each number in two different ways using mixed operations | | Number | First way | Second way | | |----|--------|----------------------------------|--------------------|------| | | Eg. 3 | 3= 6 x 4 - 3 x 7 | 3 = 56÷7÷2 - 1 | | | 1. | 10 | 10 = 2 × 3 + 4 | 10 = 5×5 - 15 | | | 2 | 12 | $12 = 5 \times 2 + 2$ | 12 = 4×5 - 8 | | | 3 | 20 | 20 = 5×5-5 | 20 = 4×4 + 4 | | | 4 | 35 | 35 = 6x5+5 | 35 = 7x7 - 2x7 | | | 5 | 48 | $48 = 9 \times 5 + 3 \times 1$ | | | | 6 | 50 | 50 = 1000 = 10 = 2 | 50 = 10 + 20 × 2 | | | 7 | 55 | 55 = 10×5+5 | 55 = 5 x 12 - 5 | | | 8 | 75 | 75 = 10×10-5×5 | 75 = 2×35 + 5 | | | 9 | 80 | 80 = 2x2x2x10 | 80 = 2 × 2 × 4 × 5 | | | 10 | 85 | 85 = 100 - 3x5 | 85 = 2×10×4+5 | | | 11 | 25 | 25 = 4×2+17×1 | 25= 3×10-5 | | | 12 | 40 | 40 = 2×2×2×5 | 40 = 10 × 10 - 3×2 | × 10 | | 13 | 56 | 56 = 5x12-2x2 | | ` | | 14 | 72 | $72 = 10 \times 10 - 4 \times 7$ | | | | 15 | 100 | 100 = 2×2×5×5 | 4 | | ### **Annotations** Uses more than one operation to make the number. Performs operations in the correct order. Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (https://www.australiancurriculum.edu.au/Home/copyright). Year 5 Satisfactory # **Geometry: Mapping** #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students had studied maps and used a compass. Students were asked to draw a treasure island map, to create a scale and compass rose, and to impose a grid and coordinates. They were required to write a set of directions, using compass points or grid coordinates, to the location of a hidden treasure on their map. Students exchanged maps and followed the directions to find the treasure. They were encouraged to comment on the scale used. Year 5 Satisfactory # **Geometry: Mapping** ### **Annotations** Identifies landmarks on map. Uses a legend to describe landmarks on map. Copyright Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (https://www.australiancurriculum.edu.au/Home/copyright). Year 5 Satisfactory # **Statistics and Probability: Come in spinner** ### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** This task was the culmination of a series of activities dealing initially with the language of chance and then conducting simple chance experiments. The students had discussed fair and unfair spinners and the numerical chance of a particular result happening. Students were required to make three spinners. One of the spinners had four colours but there was not an equal chance of spinning each colour. The second spinner had six numbers on it with an equal chance of spinning each number and the third spinner had six numbers on it with an unequal chance of spinning each of the numbers. Students were required to pose questions, predict the chance of the outcomes and then conduct the task. Students were asked to record all answers in tables and graphs. After completing the task students compared their results with other class members and interpreted the results. # **Statistics and Probability: Come in spinner** #### **Annotations** Makes informed predictions about the possible results of the experiment for different specified spinners. Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (http://www.australiancurriculum.edu.au/Home/copyright). Year 5 Satisfactory # Statistics and Probability: Come in spinner #### **Annotations** Records the results of the experiment using tally marks and totals. Displays data correctly in a column graph. Year 5 Satisfactory # **Statistics and Probability: Come in spinner** | Numbers | tally | Hotal | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------| | 1 | The second secon | 2 | | 2 | - Commence of the | 3 | | 3 | | 3 | | 5 | 21111 | | | 6 | t+++ 111 | 8 | | | nan 1,2 and 3 | | | | | to my partner | | 6 got the | most spins | on hers too. | | | | ans on hers compare | | - | | | ### **Annotations** Compares results of chance experiments. Year 5 Satisfactory # Number: How do I check my work? #### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Throughout the year, students had completed many mental calculation sessions as an introduction to mathematics lessons. They had been explicitly taught a variety of strategies to check their answers to calculations and to explain how these worked. Students were given three calculations to complete and were asked to explain the reasonableness of their answers, in a 20-minute timeframe. # Number: How do I check my work? | | and then explain how you checked the reasonableness of your answer. | |--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------| | \$456
× 19
41500
8664 | This is a reasonable answer because 456x19 is most likely going to be a big number because it is close to being 19000 which is appretty big Number | | 26347
- 9828
16519 | This is a reasonable answer because 26347-9878 would not go below 10.000 but also would not be above 20.000 Just because 11ts logic | | 2514 + 357 + 5249 + 12345
1/2/3/45
5 | This is a reasonable answer because csi4+357+5249+12345 is going to be big | | | \(\) | #### **Annotations** Calculates the answer to a multiplication algorithm involving a three-digit number and a two-digit number. Calculates the answer to a subtraction algorithm involving trading. Demonstrates understanding that rounding and estimation can be used to check the answer to a calculation. Calculates the answer to an addition algorithm involving more than two addends with different numbers of digits. Student work samples are not licensed under the creative commons license used for other material on the Australian Curriculum website. Instead, a more restrictive licence applies. For more information, please see the first page of this set of work samples and the copyright notice on the Australian Curriculum website (http://www.australiancurriculum.edu.au/Home/copyright). # **Number: Spring fair** ### Year 5 Mathematics achievement standard The parts of the achievement standard targeted in the assessment task are highlighted. By the end of Year 5, students solve simple problems involving the four operations using a range of strategies. They check the reasonableness of answers using estimation and rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students connect three-dimensional objects with their two-dimensional representations. They describe transformations of two-dimensional shapes and identify line and rotational symmetry. Students compare and interpret different data sets. Students order decimals and unit fractions and locate them on number lines. They add and subtract fractions with the same denominator. Students continue patterns by adding and subtracting fractions and decimals. They find unknown quantities in number sentences. They use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24 hour time. Students use a grid reference system to locate landmarks. They measure and construct different angles. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities between 0 and 1. Students pose questions to gather data, and construct data displays appropriate for the data. ### **Summary of task** Students were preparing to run a stall selling 'spider drinks' at the school spring fair. They were asked to create a simple budget to run the stall and work out how much ice-cream, soft drink and cups they could buy within their budget. The cost of ingredients and cups were provided to the students as follows: Total funds: \$150.00 Ice-cream: \$3.50 per 4-litre container Soft drink: \$2.00 per 1-litre or \$2.50 for 2 litres Plastic cups: \$1.99 for 25 cups. Year 5 Satisfactory # **Number: Spring fair** | | \$150 | | | |---------------|----------|------------------|------------------------| | Item | anount | Cost | total | | ICE Cre am | 401 | \$3:50 Per serve | \$ 35 | | el soft drink | 40 1 | \$2:50 Per serve | 150 | | CUP5 | 400 cups | 12:00 Per serve | \$32 | | | | | \$117
\$33 leftover | | | | | | ### **Annotations** Creates a simple table to record information about a budget. Lists the quantity and cost of each item to be purchased. Selects the soft drink size that represents better value. Calculates the cost of purchasing multiple quantities of items. Calculates the total expenditure for the items listed. Demonstrates understanding of the mathematical concept of keeping costs within a budget.